Главное, на мой взгляд, что данные спор никак не влияет на определение жизни Ф. Энгельса: "Жизнь есть способ существования белковых тел". Да, определение сегодня устарело, но с точки зрения философии оно актуально и поныне. Философский материализм прекрасно согласуется с данными биологической науки.
Еще со школьных учебников по биологии было известно, что среда и ДНК - это диалектически связанные друг с другом объекты. Взаимодействие между данными двумя факторами эволюции идет по диалектическим законам развития (хотя, конечно, диалектические законы как категории мышления суть отражение объективных законов развития материи).
Хочу отметить, что ни "Скепсис", ни "Элементы" не являются научно рецензируемыми журналами по биологии, а поэтому статьи, опубликованные в них требуют специального изучения.
Полезно отметить:
http://www.evolbiol.ru/neolamarck.htmЧерез несколько лет после сметри Дарвина немецкий ученый Август Вейсман показал, что, если отрубать крысам из поколения в поколения хвосты, это не приводит к рождению бесхвостых крысят. Другой эксперимент состоял в том, что черным мышам пересаживали яичники белых мышей, и мышата рождались белые. На основании подобных экспериментов был сформулирован принцип "Вейсмановского барьера": клетки тела не могут передавать информацию половым клеткам.
Развитие молекулярной биологии еще сильнее укрепило в сознании ученых этот барьер, действительно превратив его в догму. Было установлено, что информация, записанная в ДНК, сначала должна быть "переписана" на молекулу РНК (этот процесс называется "транскрипция"). Затем специальные сложные молекулярные комплексы – рибосомы – считывают информацию с молекулы РНК, синтезируя молекулу белка в точном соответствии записанной в РНК инструкцией. Этот процесс называется "трансляцией". Белки выполняют огромное множество функций и, в конечном счете, именно они определяют строение организма (фенотип). Таким образом, информация движется в одном направлении – от ДНК к РНК, от РНК - к белкам. Никаких механизмов переноса информации в обратную сторону – от белков к РНК или от РНК к ДНК – поначалу обнаружено не было, что и укрепило веру в невозможность такого переноса.
Потом, правда, оказалось, что есть вирусы, у которых хранилищем наследственной информации служат молекулы РНК (а не ДНК, как у всех прочих организмов), и у них есть специальный фермент обратная транскриптаза, которые умеют осуществлять "обратную транскрипцию", т.е. переписывать информацию из РНК в ДНК. Созданная таким путем ДНК встраивается в хромосомы клетки-хозяина и размножается вместе с ними. Поэтому с такими вирусами очень трудно бороться (один из них – это вирус ВИЧ). Но вот "обратной трансляции" – переписывания информации из белков в РНК – так ни у кого и не обнаружили. По-видимому, такого явления в природе действительно не существует.
Конечно, изменения, происходящие в клетках тела в течение жизни, отражаются в первую очередь на белках, но не только. В каждой клетке есть и РНК, и ДНК, и изменения могут затронуть и их тоже. Если мутация возникает при образовании половой клетки, она, естественно, передается по наследству. Обычно считается, что такие мутации происходят совершенно случайно. Так возникает изменчивость, служащая материалом для естественного отбора. Но мутации могут происходить при делении любых клеток тела, а не только при образовании яйцеклеток и сперматозоидов. Такие мутации называются соматическими (от "сома" – тело) и приводят к возникновению участков измененных тканей. Понятно, что соматические мутации могут быть вызваны различными воздействиями внешней среды, и в какой-то мере, возможно, несут информацию об этих воздействиях, которая могла бы оказаться полезной для будущих поколений.
Классическая генетика отрицает возможность наследования соматических мутаций. Считается, что изменения клеток тела не могут отразиться на генах половых клеток. По-видимому, в большинстве случаев это утвержение справедливо. Но Природа, сколько бы мы ее ни изучали, всегда остается неизмеримо сложнее любых наших теорий. И из всякого придуманного нами "закона" обязательно находятся исключения. Похоже, в данном случае исключения тоже существуют.
Далее следует информация, которая дана Снегом Севером:
Недавно открыто еще несколько способов передачи по наследству приобретенных признаков. Эти способы не связаны с изменениями самого "текста", записанного в структуре молекул ДНК, то есть с мутациями. Поэтому такую наследственность называют "эпигенетической", или "надгенетической".Один из таких "эпигенетических" механизмов – метилирование ДНК. Оказалось, что в процессе жизнедеятельности к молекулам ДНК в клетках (в том числе и в половых) специальные ферменты "пришивают" метильные группы (-CH3). Причем к одним генам метильных групп пришивают больше, к другим – меньше. Распределение метильных групп по генам ("паттерн метилирования") зависит от того, насколько активно тот или иной ген используется. Получается совсем как с "упражнением" и "неупражнением" органов, которое Ламарк считал причиной наследственных изменений. Поскольку "паттерн метилирования" передается по наследству, и поскольку он, в свою очередь, влияет на активность генов у потомства, легко заметить, что здесь может работать совершенно ламарковский механизм наследования: "натренированные" предками гены будут и у потомства работать активнее, чем "ослабевшие" от долгого неиспользования.
Другой вариант "эпигенетического" наследования приобретенных признаков основан на системах взаимной активации и инактивации генов. Допустим, ген А производит белок, одно из действий которого состоит в блокировании работы гена Б, а ген Б, в свою очередь, кодирует другой белок, способный "выключать" ген А. Такая система может находиться в одном из двух состояний: либо ген А работает, и тогда ген Б выключен, либо наоборот. Допустим, что переход системы из одного состояния в другое может происходить только в результате какого-то особенного внешнего воздействия, и случается такое редко. То состояние, в котором находится эта двухгенная система в клетках матери, будет через яйцеклетку передаваться ее потомству (поскольку сперматозоид содержит пренебрежимо малое количество белков). Если же в течение жизни матери система переключится в другое состояние, то этот приобретенный признак передастся потомству, родившемуся после "переключения". Опять получается наследование по Ламарку. См. об этом механизме ("двухоперонные триггеры") в статье В.А.Ратнера ""Внешние и внутренние факторы и ограничения молекулярной эволюции"
Что же касается мутаций, то и тут классические "неодарвинистские" представления оказались не совсем верными. Мутации, по-видимому, не являются полностью случайными. Хорошо известно, что разные участки генома мутируют с разной скоростью, причем у каждого участка эта скорость довольно постоянна. По-видимому, это означает, что одним генам организм "разрешает" мутировать чаще, чем другим. А недавно появилось хорошо обоснованное предположение, что в клетках существуют специальные механизмы для целенаправленной регуляции скорости мутаций определенных участков генов.
Способность клеток контролировать скорость мутирования разных генов особенно ярко проявляется в работе иммунной системы. Биологов и медиков давно интересовал вопрос, каким образом удается белым кровяным клеткам – лимфоцитам производить такое огромное разнообразие антител, используемых для борьбы с различными инфекциями. Антитела – это белки, которые умеют безошибочно узнавать определенные бактерии, вирусы, а также чужеродные белки и углеводы, и прикрепляться к ним, что приводит к обезвреживанию самих возбудителей или выделяемых ими токсинов. По примерным оценкам, организм человека способен производить не менее миллиона разных антител. Даже если в организм вторгается совершенно новый вирус, которого никогда раньше не было в природе, уже через несколько дней в крови можно обнаружить антитела, которые безошибочно узнают и "связывают" именно этого возбудителя (и никакого другого!).
Организм человека не может заранее заготовить антитела на все случаи жизни, включая появление ранее неведомых бактерий и вирусов! Для кодирования миллиона антител понадобилось бы два миллиона генов (поскольку каждое антитело состоит из двух белковых молекул), но ведь после расшифровки человеческого генома выяснилось, что у человека всего-навсего сорок тысяч генов. Впрочем, еще задолго до расшифровки генома стало очевидно, что гены большинства антител, образующихся в крови при различных инфекциях, не закодированы в геноме изначально, а "изготавливаются" по мере необходимости из небольшого числа генов-заготовок. Происходит это путем интесивного мутирования. В "гены-заготовки" вносятся случайные изменения (соматические мутации) до тех пор, пока не получится нужный белок – такой, который будет безошибочно "узнавать" нового возбудителя. При этом происходит отбор лимфоцитов: если вырабатываемое лимфоцитом антитело хорошо связывается с новым возбудителем, такой лимфоцит размножается (делится), если нет - погибает.
Таким образом, у клеток есть возможность целенаправленно изменять собственный геном. Конечно, клетки не могут исследовать новый вирус и "рассчитать", какой именно белок в данном случае нужен. Им приходиться действовать "методом оптимизированного случайного тыка". Оптимизированного – потому, что имеются хорошие заготовки, и клетки "знают", в какие участки этих заготовок следует вносить случайные изменения. И это уже немало!
Но самое интересное еще впереди. Группа австралийских иммунологов собрала убедительные данные, показывающие, что изменения, приобретенные генами иммунных белков в течение жизни организма, могут передаваться по наследству. И тогда потомство оказывается уже от рождения более устойчивым к некоторым возбудителям. Австралийцы предположили механизм, благодаря которому приобретенный признак (ген нового антитела) может быть передан из лимфоцитов в половые клетки. Установлено, что лимфоциты образуют внутри себя эндогенные РНК-содержащие вирусы, которые могут захватывать молекулы РНК, несущие информацию о строении нового антитела. Эти "вирусы собственного изготовления" выходят из лимофцитов и разносятся с кровью по организму. Возможно, они могут попадать и в половые клетки (хотя это пока не доказано). Здесь методом обратной транскрипции генетическая информация переписывается с РНК на ДНК, и получившийся фрагмент ДНК встраивается в одну из хромосом половой клетки.
Если гипотеза австралийских иммунологов окажется правильной, это подтвердит не только справедливость идей Ламарка о наследовании приобретенных признаков, но и всеми позабытую и преданную анафеме теорию Дарвина о "геммулах" и "пангенезе". Ведь самодельные РНК-вирусы, образующиеся в лимофцитах, по всем признакам и свойствам точно соответствуют "геммулам", существование которых предсказывал великий Дарвин.
Здесь же:
С.А.Назаренко. Эпигенетическая регуляция активности генов и ее эволюция.
В.А.Ратнер, Л.А.Васильева. 2000. Индукция транспозиций мобильных генетических элементов стрессовыми событиями.
В.А.Красилова "Нерешенные проблемы теории эволюции".
Э.Стил, Р.Линдли, Р.Бландэн. "Что, если Ламарк прав? Иммуногенетика и эволюция".
М.Д.Голубовский. Неканонические наследственные изменения.
По генетике есть много сайтов, например:
http://www.msu-genetics.ru/teaching/spe ... netics.htmСуществуют даже институты генетики
http://www.genetika.ru/Таким образом, вопрос более-менее изучен, но, конечно, полностью и окончательно не решен. Как правило, ДНК, хромосомы - носители наследственной информации, а вот изменчивость данной иформации вопрос взаимодействия среды и генов (хотя нет правил без исключений).