Теория информации основана на вероятностных, статистических закономерностях явлений. Она дает полезный, но не универсальный аппарат. Поэтому множество ситуаций не укладываются в информационную модель Шеннона. Не всегда представляется возможным заранее установить перечень всех состояний системы и вычислить их вероятности. Кроме того, в теории информации рассматривается только формальная сторона сообщения, в то время как смысл его остается в стороне. Например, система радиолокационных станций ведет наблюдение за воздушным пространством с целью обнаружения самолета противника Система S, за которой ведется наблюдение, может быть в одном из двух состояний x1 – противник есть, x2 – противника нет. Важность первого сообщения нельзя оценить с помощью вероятностного подхода. Этот подход и основанная на нем мера количества информации выражают, прежде всего, «структурно-синтаксическую» сторону ее передачи, т.е. выражают отношения сигналов. Однако понятия «вероятность», «неопределенность», с которыми связано понятие информации, предполагают процесс выбора. Этот процесс может быть осуществлен только при наличии множества возможностей. Без этого условия, как можно предположить, передача информации невозможна.
Рассмотрим пример Р. Эшби. Заключенного должна навестить жена Сторож знает, что она хочет сообщить мужу, пойман ли его сообщник. Ей не разрешено делать никаких сообщений. Но сторож подозревает, что они договорились о каком-то условном знаке. Вот она просит послать мужу чашечку кофе. Как сторож может добиться, чтобы сообщение не было передано? Он рассуждает так: может быть, она условилась передать ему сладкий чай или несладкий кофе, тогда я могу помешать им, добавив в кофе сахару и сказав об этом заключенному. Может быть, она условилась послать или не послать ему ложку, тогда я могу изъять ложку и сказать ему, что передача ложек воспрещена. Она может послать ему не кофе, а чай, но все знают, что в это время выдается только кофе. И сторож, стремясь пресечь всякую возможность связи, сводит все возможности к одной – только кофе, только с сахаром, только без ложки. Если все возможности сведены к одной, связь прерывается, и посылаемый напиток лишен возможности передать информацию.
Р. Эшби осуществил переход от толкования информации как «снятой» неопределенности к «снятой» неразличимости. Он считал, что информация есть там, где имеется (дано или выявляется) разнообразие, неоднородность. В данном случае единицей измерения информации может быть элементарное различие, т.е. различие между двумя объектами в каком-либо одном фиксированном свойстве. Чем больше в некотором объекте отличных (в строго определенном смысле) друг от друга элементов, тем больше этот объект содержит информации. Информация есть там, где имеется различие хотя бы между двумя элементами. Информации нет, если элементы неразличимы.
В середине 50-х годов, используя материал статистической теории информации, Р. Эшби изложил концепцию разнообразия, согласно которой под разнообразием следует подразумевать характеристику элементов множества, заключающуюся в их несовпадении. Так, множество, в котором все элементы одинаковы (допустим, это последовательность а, а, а, и т.д.), по мнению Эшби, не имеет «никакого» разнообразия, ибо все его элементы одного типа. Если разнообразие его измерить логарифмически, то получим логарифм единицы (единица означает однотипность элементов множества) – нуль. Множество с таким разнообразием соответствует единичной вероятности выбора элемента, т.е. какой элемент множества не был бы выбран, он будет одного и того же типа. Суть концепции разнообразия, по Эшби, заключается в утверждении, что теория информации изучает процессы «передачи разнообразия» по каналам связи, причем «информация не может передаваться в большем количестве, чем это позволяет количество разнообразия».
Исходя из идей основоположника кибернетики Н. Винера и результатов, полученных К. Шенноном, Эшби открыл закон, названный законом необходимого разнообразия, который так же, как закон Шеннона для процессов связи, может быть общим для процессов управления. Суть этого закона состоит в следующем. Для управления состоянием кибернетической системы нужен регулятор, ограничивающий разнообразие возмущений, которые могут разрушить систему. При этом регулятор допускает такое их разнообразие, которое необходимо и полезно для системы.
При допустимом разнообразии состояний кибернетической системы Рc и разнообразии возмущений Рв количество разнообразия регулятора Рр=Рв/Рc. Эта формула является одной из количественных форм выражения закона необходимого разнообразия. В логарифмической форме этот закон имеет вид
log Pp = log Рв/Рc или log Pp = log Рв – log Рc.
Обозначив соответствующие логарифмы разнообразия как информационные содержания систем, получим Iв = Iр + Iс. Из формулы следует, что сумма информационных содержаний системы и регулятора равна информационному содержанию внешних возмущений.
Регулирование, возмущения – это термины, связанные с процессом управления. Поэтому закон необходимого разнообразия является одним из основных в кибернетике – науке об управлении.
Если в начале книги понятие информации рассматривалось применительно только к процессам связи, а затем использовалось для характеристики сложности и упорядоченности материальных систем, то теперь уже речь идет об управлении ими! Впитывая всевозможные взгляды и концепции, понятие информации становится более емким и «дорастает» до уровня философских категорий – самых общих понятий, которыми только можно оперировать вообще! Если, например, понятие информации связывать с разнообразием, что вполне правомерно, то причиной существующего в природе разнообразия, по мнению академика В.М. Глушкова, можно считать неоднородность в распределении энергии (или вещества) в пространстве и во времени. Информацию же В.М. Глушков характеризует как меру этой неоднородности Информация существует постольку, поскольку существуют сами материальные тела и, следовательно, созданные ими неоднородности Всякая неоднородность несет с собой какую-то информацию.
С понятием информации в кибернетике не связано свойство ее осмысленности в обычном житейском понимании. Многие специалисты считают, что информация охватывает как сведения, которыми люди обмениваются между собой, так и сведения, существующие независимо от людей. Например, звезды существуют независимо от того, имеют люди информацию о них или нет. Существуя объективно, они создают неоднородность в распределении вещества и поэтому являются источниками информации.
В данном случае понятие информации определяется уже на уровне таких изначальных понятий философии, как материя и энергия. По мнению В.М. Глушкова, информация независима от нашего сознания. Ее объективный характер основан на объективности существования ее источника – разнообразия. Для того чтобы построить строгую теорию информации, К. Шеннону пришлось отвлечься от ее смысла. В.М. Глушков развивает этот подход, предлагая очень общее и емкое понятие информации и подчеркивая при этом ее независимость от получателя, что оставляет в стороне и смысловую сторону информации.
Очень близка к «разнообразностной» трактовке информации идея алгоритмического измерения ее количества, выдвинутая в 1965 г. А.Н. Колмогоровым. Суть ее заключается в том, что количество информации определяется как минимальная длина программы, позволяющей преобразовать один объект (множество) в другой (множество). Чем больше различаются два объекта между собой, тем сложнее (длиннее) программа перехода от одного объекта к другому. Так, воспроизвести последовательность букв а, а,..., а можно при помощи очень простой программы. Несколько большей окажется длина программы, восстанавливающей последовательность а, в, с, а, в, с,... Длина программы при этом измеряется количеством команд (операций), позволяющих воспроизвести последовательность. Этот подход, в отличие от подхода Шеннона, не базирующийся на понятии вероятности, позволяет, например, определить прирост количества информации, содержащейся в результатах расчета, по сравнению с исходными данными.
Что же такое информация?
http://n-t.ru/ri/ch/pi02.htm