Научный атеизм > Научные новости
Биотехнологии.
Yupiter:
Электрические аккумуляторы из искусственных клеток
Живая клетка представляет собой исключительно сложную систему. Понять, как она работает, поочередно выясняя функции каждой молекулы — очень трудная, возможно, невыполнимая задача. Однако, создав синтетические клетки с протеканием лишь нескольких химических процессов, ученые могут намного упростить изучение клеточной механики. В статье исследователей из Йельского университета и Национального института стандартов (NIST) (США), вышедшей в журнале Advanced Materials, описана чрезвычайно упрощенная модель клетки. Она не просто поможет пролить свет на то, каким образом некоторые клетки создают электрические импульсы; эта модель работает, как маленькая батарея. Такие искусственные клетки могут стать альтернативой традиционным твердотельным источникам энергии.
Синтетические клетки, созданные сотрудником NIST Дэвидом Лавэном (David LaVan) и его коллегами, представляют собой окруженные липидной оболочкой капли водно-солевого раствора, содержащего ионы калия и хлора. Молекулы липидов примечательны тем, что один конец молекулы притягивается к молекулам воды, другой конец их отталкивает. Когда две такие клетки соприкасаются друг с другом, гидрофобные концы липидов на внешней стороне клетки реагируют друг на друга, образуя стабильную двуслойную перегородку, разделяющую содержимое клеток — точно так же, как это делают настоящие клеточные мембраны.
Однако этим работа исследователей отнюдь не исчерпывается. Они внесли в двуслойную перегородку модифицированный белок — альфа-гемолизин, производимый бактерией Staphylococcus aureus. Эти добавленные белки создают в перегородке поры, способные пропускать ионы туда и обратно — точно так же, как поры в биологической клетке.
Если растворы в двух клетках изначально обладают разными концентрациями, то, введя в клетки металлические электроды, мы получим настоящий гальванический элемент. Компенсируя ток ионов через каналы, в соединяющем электроды проводнике возникнет электрический ток. Постепенно концентрации ионов в клетках уравняются — система разрядится.
По мнению Лавэна, создание искусственных копий сложных клеток — например, клеток электрического угря, позволяющих ему оглушать добычу электрическим импульсом — пока что слишком сложная задача. Пока что ученые заняты исследованием построенной ими простейшей системы, работу которой удобно изучать именно в силу минимального набора элементарных свойств — таких, как размер капель, концентрации водных растворов и количества ионных каналов в перегородке между клетками.
Миниатюрная батарея из двух искусственных клеток, содержащая всего 200 нанолитров раствора, способна поддерживать электрический ток в течение почти 10 минут. Большая по размерам система, содержащая порядка 11 микролитров, продержалась более четырех часов. По соотношению производимой энергии и данного объема биологические батареи в двадцать раз менее эффективны, чем традиционные свинцово-кислотные аккумуляторы. Но в отношении денежной стоимости превращения химической энергии в электрическую искусственные клетки уже вполне сравнимы с твердотельными устройствами, превращающими тепло, свет или механическое напряжение в электричество — таким образом, рано или поздно синтетические клетки могут занять их место в инструментарии нанотехнологий.
(с) http://www.nanonewsnet.ru/news/2009/ele ... ykh-kletok
Yupiter:
Японцы создали "органическую флеш-память"
Прототип запоминающего устройства нового типа - так называемую органическую флеш-память, создали ученые из Токийского университета (Япония).
Новая разработка выполнена с применением органических материалов, однако имеет ту же базовую структуру, что и традиционная флеш-память. Рабочее напряжение в процессе записи и чтения информации составляет 6 и 1 вольт соответственно. Кроме того, прототип выдерживает до тысячи циклов перезаписи.
Новинка пока не может сравниться с традиционной флеш-памятью по плотности и продолжительности хранения данных, поскольку созданный образец запоминающего устройства может удерживать информацию не более суток. Это является одной из основных проблем.
Зато "органическая флеш-память" намного дешевле в производстве и обладает определенной механической гибкостью. В перспективе новинка может найти применение в устройствах на основе электронной бумаги, различных датчиках и других продуктах, в которых требуются недорогие запоминающие устройства.
О сроках коммерциализации новой технологии исследователи пока не говорят.
(с) http://podrobnosti.ua/technologies/2009 ... 52200.html
Yupiter:
В Британии создан первый полностью органический робот.
Исследователи из Университета Западной Англии разработали первого в мире робота, состоящего из биологических форм. Новый аппарат, получивший название Plasmabot, был разработан в рамках гранта на создание свободных от кремния биологических роботов. Состоит новинка из гибкого материала на основе микроорганизмов Physarum polycephalum. Данные бактерии часто обитают в лесах или влажных тенистых местах, сообщает издание CyberSecurity.
Финансирование проекта разработки робота велось в рамках проекта Leverhulme Trust, задача которого заключается в создании полностью биологических роботов, не имеющих в своей основе кремниевых компонентов и способных работать в параллельном режиме. Профессор Энди Адамацки, руководитель проекта, рассказывает, что ранее его группе уже приходилось создавать вычислительные системы на базе органических оснований.
"Задача таких роботов заключается в выполнении тех или иных необычных заданий. Созданный нами плазмодиевый робот представляет собой искусственный интеллект на базе органической субстанции, он способен заниматься поиском источников питания, обрабатывать их за счет собственной протоплазмы и передавать данные о найденном источнике. Помимо этого, робот может решать вычислительные задачи, такие как поиск кратчайшего пути из одной точки в другую", - говорит Адамацки.
Однако наиболее выдающейся способностью робота является его возможность расти. Рост идет за счет появления новых микроорганизмов, размножающихся под влиянием света, тепла и питательных веществ. За счет того, что ученые могут манипулировать этими показателями, они также могут и управлять процессом роста биоробота.
"Пока мы находимся на ранней стадии понимая всего потенциала биологических роботов, однако со временем мы, вероятно, сможем создавать более сложные механизмы, способные самоорганизовываться, работать в производственных и научных целях", - говорит он.
(с) http://podrobnosti.ua/technologies/2010 ... 66751.html
Yupiter:
Умное распределение химических связей, их влияние на проводимость образца в разных точках и переключение состояний отдельных атомов вполне можно использовать как основу вычислительной системы.
Такой тезис экспериментально подтвердили учёные из Мичиганского технологического университета (Michigan Technological University), а также японских национальных институтов материаловедения (NIMS) и информационных и коммуникационных технологий (NICT). Они построили работоспособный прототип молекулярного компьютера с массовым параллелизмом.
Новая система способна одновременно менять и считывать состояние около 300 бит. По своему принципу, объясняют авторы новинки, такой процессор больше сходен не с суперкомпьютерами, содержащими множество чипов, а с мозгом, в котором гигантское число связей между миллиардами нейронов обеспечивают параллелизм, какой кремниевым монстрам и не снился.
В основе этого вычислительного устройства — молекула 2,3-дихлоро-5,6-дициано-1,4-бензохинона (DDQ) — её схема показана на рисунке под заголовком. Энное число DDQ учёные выложили в два мономолекулярных слоя на золотой подложке. Связанные между собой строго определённым образом, эти молекулы образовали логические переключатели, состоянием которых можно управлять.
Авторы убедились на опыте, что молекулярный слой может выполнять цифровые логические операции и что с его помощью можно вычислять диаграммы Вороного, моделировать диффузию тепла и рост раковой опухоли. (Детали — в статье в Nature Physics.) Кроме того, исследователи продемонстрировали, что слой DDQ умеет самозалечиваться после возникновения дефекта. На такой фокус ни один традиционный компьютер не способен, зато опять прослеживается аналогия с живым мозгом.
(с) http://www.membrana.ru/lenta/?10364
Yupiter:
Человечество полным ходом движется к созданию андроидов: британские учёные представили модель Ecobot III, которая снабжена самым настоящим кишечником.
Идея создания робота, который мог бы в течение длительного времени самостоятельно находить источники энергии, давно витала в воздухе. Такие модели уже есть. Обычно они питаются за счёт так называемых микробных топливных клеток (microbial fuel cells, MFCs) — биоэлектрохимических устройств, которые основаны на бактериальных культурах, разлагающих биомассу для получения энергии. До сих пор, однако, никому не удавалось решить вопрос о том, как эвакуировать отходы производства.
На создание «Экобота-3» у Криса Мелуиша, Иоанниса Иеропулоса и их коллег из Bristol Robotics Lab ушло три года. Без посторонней помощи он может выполнять простые операции (например, движение на свет) в течение семи дней. Опорожнение происходит раз в сутки.
Ключевой компонент искусственного кишечника — шланговый насос, действующий благодаря банальной гравитации точно так же, как наша толстая кишка.
Процесс пищеварения начинается с того, что робот двигается к диспенсеру, накачивающему в его «рот» специально подготовленную биомассу (смесь минералов, солей, дрожжевых экстрактов и прочих питательных веществ). Внутри «Экобота» она разделяется на 48 MFCs, в анодных камерах которых проходят реакции окисления-восстановления. В ходе бактериального обмена веществ освобождаются атомы водорода. При контакте с электродом они генерируют ток, в то время как ионы водорода проходят через протон-обменную мембрану и поступают в катодную камеру с водой, где захватываются атомами кислорода и пополняют запасы воды. Вода, впрочем, регулярно испаряется, и роботу приходится дополнительно ещё и пить.
Клетки разделены на два отсека по 24 MFCs в каждом, чтобы под действием силы тяжести вся неусвоенная масса накапливалась в центральном жёлобе. Оттуда она несколько раз возвращается в «рот», чтобы извлечь максимум энергии, и только потом извергается прочь. Тем самым топливные клетки избегают засорения, а бактерии — гибели от кислотных отходов.
Пока MFCs способны извлечь из биомассы всего 1% химической энергии. Возможно, увеличение поверхности анодов позволило бы улучшить показатели. Но Роберт Финкельштейн, работающий над проектом Energetically Autonomous Tactile Robot (EATR) в Управлении перспективных исследований Министерства обороны США (DARPA), считает, что технология микробных топливных клеток в принципе ошибочна. Его EATR будет получать энергию благодаря сжиганию биомассы, а не перевариванию. Для этого компания Cyclone Power Technology разработала новую версию двигателя внутреннего сгорания. Робот, презентация которого состоится вот-вот, будет способен проходить 160 км на 60 кг биомассы.
Одно из преимуществ MFCs, однако, заключается в том, что они могут усвоить практически всё, включая сточные воды, которые не очень-то сожжёшь. В топливных клетках «Экобота-3» задействованы сотни видов бактерий, готовые сожрать что угодно. Кстати, эксперименты Bristol Robotics Lab могут привести к созданию технологии очистки сточных вод.
Ecobot III выйдет в свет на конференции Artificial Life, которая состоится в Оденсе (Дания) в августе. Следующим шагом станет разработка модели, которая сможет усваивать мясо. Бояться не стоит: на такой диете робот проходит всего 21 см в сутки, так что вас он не поймает, а вот мошкара пусть побережётся!
Видео в исходной новости:
(с) http://science.compulenta.ru/548359/?r1=yandex&r2=news
Навигация
Перейти к полной версии